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This article investigates and identifies the baseline design and implementation
of the digital baseband architecture for advanced deep space transponders. ‘Trade
studies on the selection of the number of bits for the analog-to-digital converter
(A DC) and optimum sampling schemes are presented. In addition, the proposed
optimum sampling scheme is analyzed in detail. Descriptions of possible implemen-
tations for the digital baseband (or digital front end) and digital phase-locked loop
(DPLL) for carrier tracking are also described.

1. Introduction

Future NASA missions will require cheaper, smaller,
and more energy-efficient spacecraft telecommunication
equipment. These requirements motivated this study on
advanced transponders for deep space applications. Re-
cently, a study [I] has investigated various digital b~~eband
architectures for future deep space transponders. Three
different architectures were proposed for near-term, inter-
mediate, and long-term solutions. The purpose of this ar-
ticle is to investigate and iden~ify the baseline design and
the conceptual implementation of the digital baseband ar-
chitecture for a short-term solution.

The baseline architecture will me advanced digital tech-
nologies and signal-processing techniques for improved
performance along with attractive functionality and adapt-

ability to mission requirements. The identified architec-
ture should also meet the interface constraint to minimize
the cost of the design. The baseline architecture was de-
veloped based on the current configuration of the Cassini
Deep Space Transponder (DST)  [2]. The proposed archi-
tecture will ri~aintain the analog  IF section and the au-
tomatic gain control (AGC)  loop at the first IF mixer
identical to the current Cassini  DST. However, the second
IF will be redesigned to ease the digitization of basebancl
functions. In addition, the command detector unit (CDU:
function, along with its modifications, will be included a
a whole in the advanced DST. A description of the CDL
and its modifications can be found in [1].

The simplified block diagram of the baseline architec-
ture for the receiver of the DST is shown in Fig’. 1. F’01
this baseline architecture, the analog  phase-locked 100F

1. l’hc work described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with lhc National Aeronautics and Space Administration.
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(APLL) for carrier tracking is replaced by a hybrid dig-
ital phase-locked loop (DPLL)  and the ranging signal is
extracted by filtering and turning the signal around with-
out further signal processing (analog turnaround ranging).
To simplify the hardware, the sampling frequency will be
selected so that it is compatible with the sampling rate re-
quirement of the CDU.  A detailed description of the base-
line architecture shown in Fig. 1 can also be found in [1].

This article begins with the trade studies for the selec-
tion of the number of bits for the ADC and the optimum
sampling technique. Based on the selected optimum sam-
pling scheme, the implementation of the baseband digital
front end for simplified hardware waa analyzed and pro-
posed, Next, preliminary results related to the design and
conceptual implementation of the DPLL for carrier track-
ing are presented and discussed. Finally, the article con-
cludes with a summary of the salient features associated
with this baseline design and direction of future work.

Il. Selection of Number of Bits for the ADC
The number of bits required for the ADC at the second

IF will determine the setting of the power for the AGC, the
carrier signal-to-noise (SNR)  degradation due to quanti-
zation, and the saturation noise. This section summarizes
the results presented by Ngu yen.1 The carrier SNR degra-
dation due to digitization, A, in the presence of Gaussian
noise, is given by Nguyen2 as

‘=(’’-% (’+3)-’
where

~ = 2(K2 + l)F(K) – ~e(-%)

(1)

(2)

(3)

11’.  M. Nguyen, “Selection of the A/D Sampling Frec[uency and
Number of Bits for the Advanced ‘1’rarrsponder,”  JPL Interof-
fice Memorandum 3313-92-024 (internal document), Jet Propul-
sion Laboratory, Pasadena, California, April 20, 1992, revised
May 1S, 1992.

2 Ibid.

(4)

/()l~–$du
F(A-)  =  —

a.’
(5)

Note that (F’N/02)  denotes the quantization noise plus
saturation noise-to-carrier signal power ratio; (Ps/F’n)  de-
notes input carrier power-to-noise power ratio; NO is the
one-sided input noise power density; FS is the sampling
frequency;  M = 2N-1, where IV is the number of bits
(including sign); and LF is the loading factor defined as
follows:

LF =
rms amplitude of the total input signal

ADC saturation voltage
(6)

The optimum values for K for various values of N have
been calculated in [3], and the corresponding optimum
LF as a function of A’ is depicted in Fig. 2. From the
optimum values of N and LF found in Fig. 2, one can cal-
culate the corresponding values of (PN/a2) using Eq. (2).
Using the calculated (~N/02) together with Eq. (l), one
can calculate the carrier SNR degradation due to digi-
tization. The results are plotted in Fig. 3 for O dB-Hz
< Ps/No  <50  dB-Hz and 1 MHz < Fs < 36 MHz. Note
that for O dB-Hz  < Ps/No  <50 dB-Hz and 1 MHz < FS
< 36 MHz,  one has: 1 + Ps/Pn  N 1. Using this approxi-
mation, the results are shown in Fig. 3.

Therefore, to achieve the digitization with a degrada-
tion in carrier SNR of less than 0.1 dB and to meet the
required dynamic range of 6N dB for the input carrier
signal, the required number of bits is N > 4 bits. In ad-
dition, the higher the number of bits that one selects, the
less susceptible to interference the signal will be.3 Conse-
quently, the required number of bits for the ADC should
be selected such that 4 bits ~ N <8 bits.

Ill. Optimum Sampling Scheme

A. Review of Current Sampling Techniques

Currently, there are several techniques for sampling
the band-pass signals (4]: in-phase and quadrature (13zQ)
baseband sampling with analog quadrature, I&Q sampling
with analog Hilbert  transform, band-pass sampling with

3 J. Berner, “Number of Bits Required in Block-V ADC,  ” JPL In-
teroffice Memorandunl  3338-90-048 (internal document), Je t
Propulsion Laboratory, Pasadena, Califorr,ia,  March 26, 1990.
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digital quadrature tnixcrs, and band-pass sampling with
digital IIilbcrt transform. DLased upon the investigation in
[4], the band-pass sampling technique with digital quadra-
ture mixers  is rccommcndcd  (see Fig. 5) for the baseline
design of the advanced transponder because of the follow-
ing reasons:

(1)

(2)

(3)

(4)

No phase and amplitude imbalances because the
mixing is done in digital domain.

The digital low-pass filter (LPF) using finite-impulse
response (FIR) filter provides constant group delay
that is very important for ranging and Doppler in-
formation.

Only one ADC is required.

If the sampling period is exactly l/4FJF, then the
reference of I&Q components reduces to an alternat-
ing sequence.

It will be shown later that the hardware implementation
can be simplified by using the last property with some
modification. Before describing how to implement the
“digital front end” for the advanced transponder, the dig-
ital front end needs to be defined.

The digital front end of the transponder (see Figs. 1 and
4) is designed to accept an IF analog signal and output dig-
ital baseband I&Q components for further processing by
the remainder of transponder. The purpose of the digital
front end is to provide the transponder with a demodula-
tion capability from an IF-to-baseband digital signal.

B. Conceptual Implementation of the Digital Front
End

To implement the digital front end (see Fig. 4), one
must set up the criteria for selecting both the optimum
sampiing frequency and the analog IF. First, there are sev-
eral criteria for selecting the optimum sampling frequency,
namely,

(1)

(2)

(3)

(4)

The hardware implementation should be simple.

The sampling frequency shouid  be suf%ciently  high
to meet the required number of samples per symbol
for the CDU and the carrier tracking loop.

The sampling frequency should be suflicientiy  high
to prevent aliasing  of the baseband signal with the
images that occur at the sampling rate.

The sampling frequency selected should meet the
current specification of the analog-to-digital (A/D)
technology with reasonable cost.

Based on these criteria, tile sampiing frequency, FS,

must be selectecl to satisfy the following conditions [5-7]:

FS ~ 213W (7)

&dF’’-wF&(F(”%”%
(8)

where BW is the bandwidth of the band-pass signal in
hertz, F IF is the center of the IF band, and 1 is a positive
integer. In order to simplify the hardware implementation,
one chooses equality in Eq. (7) and an odd integer for 1 in
Eq. (8):

F5 = 2pB W (9)

Bw
nF5 = F I F  —  —

2
(lo)

where p >1 and n = (/ + 1)/2.

Solving for the sampling frequency in terms of FJF, one
gets

‘s= (14:%P)

for p = 1, Eq. (11) reduces to

4 FI F

‘ s= ( 1 +  4 n )

where n satisfies the foilowing inequality

“[*+1

(11)

(12)

(13)

where [z] is the smallest integer that is less than or equal
to Z. It shoulcl  be mentioned that the sampling scheme
proposed is known as the under-sampling scheme. Note
that, in practice, to simplify the I&Q sampling technique
using digital quadrature mixers (see Fig. 5) to the config-
uration shown in Fig. 7(a), the sampling frequency must
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be chosen as 4FIF  [8-10].3 IIowever, using Eq. (12) one
can avoid selecting a high sampling frequency (and hence
achieve a more energy el%cient spacecraft). As an exam-
ple for the proposed under-sampling scheme, let the IF be
5 MIIz and the bandwidth of the signal be 36 kHz; then
using Eq. (13), one obtains n < 69. If one selects n = 6 ,
then the sampling frequency required for this case is, from
Eq. (12), F.s. = 0.8 MHz. Figures 7(b) and (c) illustrate
and compare the two sampling schemes discussed above.

Secondly, one must select the IF so that the analog cir-
cuitry in the transponder can be designed and built easily.
There are several criteria for selecting the IF, namely,

(1)

(2)

(3)

(4)

(5)

The quadrature sampling error caused by spectral
bands overlapping [7] must be avoided by selecting
the upper cutoff frequency of the band-pass filter
(BPF) equal to an integer multiple of the bandwidth,
i.e.,

B W
F I F  + ~ =  c B W (14)

where c is a positive integer.

For minimum hardware implementation, FIF  and
FS should satisfy Eq. (12).

F IF must be chosen such that the associated band-
pass filter in the analog-mixing and filtering circuitry
is realizable. The passband of this filter must pass
t}le required number of sidelobes of the command
signal and possibly the highest ranging clock fre-
quency.

F IF must be chosen by taking into consideration the
throughput limitation of the digital filters of the dig-
ital front end.

F IF must be chosen to provide minimum carrier de-
lay variation.

To show t,hat Eq. (12) can be used to select the sampling
frequency for hardware simplification, look at the mathe-
matical model for the uplink signal, S(t):

S(t) = @sin ((w i- wd)t + ~(t) -i- 9) (15)

where

3 M. J. .4gan and C. R. Pa.sclualino,  “AMT Modem Digital Front
End,” JPL Interoffice Memorandum AMT:331-5-90-o  (internal
document), Jet Propulsion Laboratory, P&~adena, California, Oc-
tober 1990.

P =

W=

wd =

e(t) =

$9=

m =

d(t) =

Wsc =

nlR =

R(t) =

total received power

angular carrier frequency

Doppler angular frequency offset

phase modulation = red(t) sin (wsCt)
+ mnR(t)

phase offset

command modulation index

command non-return-t~zero  (NRZ)  data

command subcarrier  frequency

ranging modulation index

ranging signal

Without loss of generality, one can set w
2~FIF,wd  = O,P = O, and can expand Eq. (15)

S(t) = @[cos  (~(t)) sin (2~FI~t)

+ sin (El(i))  cos (27rFJrt)]

I
= WIF = /
t o  g e t

(16)

The first term in Eq. (16) represents the carrier comp~
nent, and the second is the command signal component.

Assume that the I&Q components of Eq. (15) are ex-
tracted by using analog quadrature mixers as shown in
Fig. 6. If the cutoff frequency of the LPF is such that it re-
jects higher-order harmonics components and passes only
the first harmonic component without distortion, then the
output I&Q components are

l(t) = ~ sin(61(t)) (17)

Q(t) = ; COS(@(t)) (18)

Note that Eqs. (17) and (18) have been normalized by
m. If one assumes that the ranging signal is off, then
the l(t)  and Q(t) shown in Eqs. (17) and (18) become

I(t)  =~d(t) sin (msin(wsCt)) % d(i)~l(m) sin(w.s~t)

(19)

Q(t) = ~ cos (msin(wsct))  % ~JO(m) (20)
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Note that the 1-component contains the command infor-
n~ation ancl the Q-component contains the ampli~ude  of
the carrier component.

A sample of the signal expressed in Eq. (16) is obtained
by using the sampling frequency derived in Eq. (12). At
this sampling frequency, one has

~(471 +1)) ~c 0,1,2,3,4, .t=kTs=
4 FI F

(21)

where T5 denotes the sampling period. Substituting
Eq. (21) into Eq. (16) and evaluating it for
k =0,1,2,3,4, . . . . one sees that Eq. (16) generates the
following sequence:

@sin (@(O)), @COS (O(TS)), -@sin (@(27_s)),

- @cos (@(3Ts)), @sin (@(471)),

@cos (@(5Ts)), –@sin  (@(6Ts)),

- @cos (~(7Ts)), @sin (@(8Ts)),

@cos(@(9T’5))  , . . .

1(0),  Q(Ts), I(2T5), Q(3Ts), 1(47:), Q(5Ts),

Z(6Ts),  Q(71~), I(STS),  Q(9TS),  . . .

Based  on these results, the optimum implementation
of the digital front end for the baseline design of the ad-
vanced transponder is shown in Fig. 7. As shown in this
section, using the sampling frequency derived in Eq. (12),
one can simplify the hardware. The hardware sinlplifica-
tion is exactly the same as for the case when the sampling
frequency is 4FJF [9]4 except when using lower Fs, and
hence lower power consumption.

IV. Design and Implementation
of the Carrier Tracking Loop

A. Description of the Carrier APLL and
Transformation Techniques

The block diagram of the analog carrier tracking loop
for the Cassini  DST is depicted in Fig. 8. Based on the cur-
rent design, an architecture of the DPLL for computer sim-
ulation is developed. Presently, the analog carrier tracking
loop is Type I, second order PLL with the following char-
acteristics:

AK = loop gain = 2.4 x 107 (22)

Taking the above sequence and multiplying by the
-5

‘(s)= (l+:Rcs)’~~c  =  1“6X 10 (23)

{1,1,–1,–1,1,1,–1,–1,1,1, . ..} sequence, one gets

@sin (@(O)), @CM (@( Ts)), @sin (W2TS)),
F(S) =

1 + T2.S , T1 = 4707, T2 = 0.0442 (24)
l+TIS

@cos (@(3Ts)), @sin (@(4Ts)), 1
‘(s)= (l+ WS)’W  = l“Ox 10-6 (25)

@cos (@(5Ts)), @sin (~(6Ts)) ,
K(s) = : (26)

@cos (@(7Ts)), @sin (@(8Ts)),

Note that B(S) is the typical LPF, F(S) is the loop filter,

@cos(@(9Ts))  , . . . V(S) is the rolloff filter of the voltage control oscillator
(VCO),  and K(S) is the VCO integrator.

Note that this sequence alternates between samples of l(t) Let G(S) be the transfer function of the analog loop
and Q(t) shown in Eqs. (18) and (19) with only a scaling defined as follows:
factor difference. The above sequence can be simply ex-
pressed as 4 

Ibid.
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G(S) =B(S)F(S)V(S) (27)

Fromthe analog characteristics of theloopj  there are four
different techniques (cases 1-4) to design the equivalent
digital loop

(1)

(2)

(3)

Bilinear llansformation Method. This method pre-
serves the phase characteristics in the narrow pass-
band when mapping the APLL into the digital do-
main with high sampling frequency. The map-
ping from analog (S-domain) to digital domain (Z-
domain) can be achieved by direct substitution of
the following equation into the analog transfer func-
tion [11-13]:

S=q=u
Ts (Z + 1 )

(28)

Impulse-Invariant Transformation Method. This
mapping technique preserves the impulse response
at the sampling points. ‘The relationship between
the S-variable and Z-variable is given by [12-13]

S= (z-l)
TS Z

(29)

However, the corresponding digital transfer func-
tion cannot be obtained by substituting Eq. (28) di-
rectly into the analog transfer function as in case (1)
above. Let g(t) be the impulse response of G(S),
i.e., g(t) = L-l{ G(S)}, where L-l {.} denotes the
inverse Laplace  transform of {,}, Thus, the digital
approximation of the analog transfer function G(S)
is given by

(GD(Z)  = TS  Z{ fl(f)lt=nT,  }
)

(30)

where z{. } is the z-transform of {.}. Note that the
analog transfer function G(S) considered in this ar-
ticle is defined in Eq. (27).

Step-Invariant Transformation Method. This
method preserves the step response at the sampling

points when mapping S-domain to Z-domain. The
relationship between S- and X-variables is given in
[12]:

(31)

Similar to case (2), the equivalent digital transfer
function of the open loop cannot be found by sub-
stituting Eq. (31) directly into the analog transfer
function. The relationship between the analog  and
digital transfer function is [12, 13]

CD(Z) = ~ (%{~L-l[%]J:=nTs})  ’32)

(4)

where z{. } and G(S) are defined the same as above.

Rational Transformation Method. This mapping
technique is identical to the impulse-invariant trans-
formation technique [11, 12].

B. Recursive Implementation of the Carrier DPLL

To obtain the digital approximation of the carrier
APLL described in Section IV.A,  each functional block
in the analog loop, i.e., B(S), F(S), V(S), and K(S),
can be mapped directly into the Z-domain using bilinear
transformation or the composite function B(S) F(S)V(S)
using impulse-invariant (or step-invariant) transformation.
These mappings are accomplished by applying Eqs.  (28),
(30), and (32), depending on the type of transformation
used. Following are the recursive implementations of the
digital transfer functions.

1, Recursive Implementation of B(S), I’(S), V(S),
and K(S) Using Bilinear Transformation. To obtain
the digital approximation of the analog loop using bilinear
transformation, one substitutes Eq. (28) into Eqs. (23)-
(26) to get the Z-domain representations for the LPF
B(S), loop filter I’(S), VCO rolloff filter  V(S), and the
integrator K(S). The results are

L’(z) =
(l+ Z-’)

(AOOZ-l+AII)
(33)
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~(z) = (.4,Z - l?,)
(.4,.Z -- l?, )

(34) (41)

7’S(Z -t- 1) The digital approximation for the analog transfer func-
J~(~) = Z(Z _  ~) (35) tion G(S) (see Eq. (27)) is obtained by finding the inverse

Lap]ace transform of G(S) and then substituting the result
into Eq. (30). Evaluating Eq. (30), one has

where
Aoo=l–  CO, AI1=l+CO (36)

GD(Z)  = Ts
[

Crl) CY]——— —.—

Ao=l+aO, A1=l+bo, BO=aO–l, l?l=bo-l ( 3 7 )
1 _  Z-le-fi +  ~ _  z-~e-bl’,

and
0’2

+ ~ _ ~-le-cn 1 (42)

2TRCco=~, ao_2T2,  bo=~
Ts Ts

(38) w h e r e

ao  =  (T, -  T:c;(: -  T“)
Note that the Z-domain representation for V(S) is exactly
the same as Eq. (33), except that Co is replaced by 7RC —  72

a’ =  (TRC –  ~l)(~RC  –  ~)
2TV

co=% (39)
W–T2

a2  =  (T2 –  T,)(TV -  TRC)
The digital closed-loop transfer function, H(Z), for this

case is given by and

(43)

(44)

(45)

AK(B(Z)F(Z)V(Z) K(Z))

‘l(Z)  = [ 1 +  AK(B(Z)F(Z)V(Z)K(  Z) ) ]
(40)

1 1
a=~,b= —,c=— (46)

T1 TRC TV

Plots of the analog and digital closed-loop phase and
magnitude responses are shown in Figs. 9(a) and 9(b).
These figures show that for sampling frequencies below
100 kHz, distortions in phase and magnitude can occur
for the digital approximation loop. In addition, the figures
show that for sampling frequencies greater than or equal
tc) 100 kHz the response of the digital loop approaches that
of the analog counterpart. Hence, the minimum sampling
frequency for this case is 100 kHz. Figures 10(a), (b), and
(c) show the recursive implementation of the LPF B(Z),
integrator K(Z), and loop filter F’(Z).

The implementation of the rolloff filter V(Z) is similar
to that of the LPF B(Z).

2. Recursive Implementation of the Analog
Transfer Function G(S) and K(S) Using Impulse-
Invariant Transformation, To obtain the equivalent
digital approximation for the integrator A’(S), one substi-
tutes Eq. (29) into Eq. (26) to get

The digital closed-loop transfer function for this case is
given by

AK (GD (Z) K(Z))

‘f(z) =  [ 1 +  AK(G~(Z)K(Z))]”
(47)

From Eq. (47), the plots of the phase and magnitude
responses can be obtained for the digital approximation
loop, Figures 1 l(a) and 1 l(b) illustrate the closed-loop
phase and magnitude responses for both analog and digi-
tal loops. The figures show that the response of the digital
loop approximated by using impulse-invariant transforma-
tion is the same as the analog loop when the sampling fre-
quency is higher than or equal to 100 kHz. When the sam-
pling frequency is less than 100 kHz, the digital loop can
encounter serious distortion in both phase and amplitude.
The recursive implementations GD (Z) and K(Z) using
impulse-invariant transformation are shown in Figs. 12(a)
and 12(b).
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3. Recursive Implemexltation  of the Analog
‘&nnsfm Function  G ( S )  and K(S) U s i n g  Step-
Invariant ‘IYar~sformlation. Digital approximations
K(Z) and GD(Z) for J{(S) and G(S) using step invari-
ant transformation can be obtained by using Eqs. (31) and
(32). The results are

.
K(z) = ~z~:  ~,

[
G D (Z) = flo  + ~1 ~ _l~.~~_l.T, 1

[ l– 2-1+ ps 1 _ Z-le-b?’, 1
+ P3

[

l– z-l
1 _ z-le-cTs

1

where

PO=:+?+:

PI = -~y B2= -~, P3= -~

(48)

(49

(50)

(51)

The parameters cro, crl, a, b, and c are defined in Eqs. (43)-
(46), respectively. Again, Eq. (47) can be used to evaluate
the closed-loop transfer function for this case, The plots of
the closed-loop transfer functions for both analog and dig-
ital .Ioops are shown in Figs. 13(a) and 13(b). The figures

show that the magnitude response approaches the ana-
log response when the sampling frequency is higher  than
or equal to 100 klIz.  However, the phase  response suf-
fers serious distortion when the sampling frequency is less
than 1 MIIz.  Thus, in order to achieve the same response
as the analog loop, the digital approximation loop using
step-invariant transformation must be sampled at least at
1 MHz, i.e., this method requires a 10 times higher sam-
pling frequency than the previous methods. The recursive
implementations of GD (Z) and K(Z) using step-invariant
transformation are shown in Figs. 14(a) and 14(b).

V. Conclusions and Future Work

This article presented preliminary results on the design
and implementation of the baseline digital baseband archi- 1
tecture for future deep space transponders, and also pre-
sented trade studies on: (1) the number of bits required by :
the ADC, (2) the sampling and IF for hardware simplifica-
tion, and (3) the optimum sampling technique. A concep- 1
tual implementation of the proposed optimum sampling I
technique was presented and discussed. In addition, the
phase and amplitude responses of digital approximations
of the analog loop were briefly investigated. It was found
that in order to achieve the same closed-loop responses
as the analog counterpart, the step-invariant transforma-
tion method requires a higher sampling frequency than the
other methods.

Furthermore, this article identified various architec-
tures for possible implementation of the digital carrier
tracking loop. The architecture that was found to provide
the smallest phase jitter and fastest response is appropri-
ate for the advanced transponder.
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